DHODH Blockade Induces Ferroptosis in Neuroblastoma by Modulating the Mevalonate Pathway.

阅读:3
作者:Shir Jui-Chia, Chen Pin-Yu, Kuo Chuan-Hao, Hsieh Chiao-Hui, Chang Hsin-Yi, Lee Hong-Chih, Huang Chen-Hao, Hsu Chun-Hua, Hsu Wen-Ming, Huang Hsuan-Cheng, Juan Hsueh-Fen
Neuroblastoma is the most common heterogeneous solid tumor in children, and current treatment options remain limited, especially for high-risk patients. Previous studies have identified dihydroorotate dehydrogenase (DHODH), a key enzyme in pyrimidine synthesis, as a potential therapeutic target in cancer. However, none of the existing FDA-approved DHODH inhibitors have shown effective inhibition of neuroblastoma cell growth. To address this challenge, we employed virtual screening to discover potential DHODH-targeting drugs, identifying Regorafenib as a promising candidate. Regorafenib significantly inhibited neuroblastoma growth in both neuroblastoma cells and patient-derived organoids. To unravel the underlying molecular mechanisms, we conducted Tandem Mass Tag (TMT)-based quantitative proteomics using LC-MS/MS. Our proteomic profiling revealed substantial regulation of lipid metabolism proteins, specifically those in the mevalonate pathway, correlating with ferroptosis induction. Further analysis showed that DHODH inhibition led to a reduction in total cholesterol, cholesterol esters, disrupted lipid droplet formation, and significantly decreased the expression of Squalene Epoxidase (SQLE), a key enzyme in lipid metabolism. Notably, we also observed an increase in nuclear SQLE expression following DHODH inhibition. In summary, our study highlights DHODH blockade as a novel approach to induce ferroptosis through lipid metabolism reprogramming, underscoring DHODH as a viable therapeutic target for neuroblastoma treatment. These insights open new avenues for metabolism-based interventions in aggressive pediatric cancers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。