Binary Neural Networks in FPGAs: Architectures, Tool Flows and Hardware Comparisons.

阅读:4
作者:Su Yuanxin, Seng Kah Phooi, Ang Li Minn, Smith Jeremy
Binary neural networks (BNNs) are variations of artificial/deep neural network (ANN/DNN) architectures that constrain the real values of weights to the binary set of numbers {-1,1}. By using binary values, BNNs can convert matrix multiplications into bitwise operations, which accelerates both training and inference and reduces hardware complexity and model sizes for implementation. Compared to traditional deep learning architectures, BNNs are a good choice for implementation in resource-constrained devices like FPGAs and ASICs. However, BNNs have the disadvantage of reduced performance and accuracy because of the tradeoff due to binarization. Over the years, this has attracted the attention of the research community to overcome the performance gap of BNNs, and several architectures have been proposed. In this paper, we provide a comprehensive review of BNNs for implementation in FPGA hardware. The survey covers different aspects, such as BNN architectures and variants, design and tool flows for FPGAs, and various applications for BNNs. The final part of the paper gives some benchmark works and design tools for implementing BNNs in FPGAs based on established datasets used by the research community.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。