Biphasic environments can enable successful chemical reactions where any single solvent results in poor substrate solubility or poor catalyst reactivity. For screening biphasic reactions at high throughput, a platform based on microfluidic double emulsions can use widely available FACS (Fluorescence Activated Cell Sorting) machines to screen millions of picoliter reactors in a few hours. However, encapsulating biphasic reactions within double emulsions to form FACS-sortable droplet picoreactors requires optimized solvent phases and surfactants to produce triple emulsion droplets that are stable over multi-hour assays and compatible with desired reaction conditions. This work demonstrates such FACS-sortable triple emulsion picoreactors with a fluorocarbon shell and biphasic octanol-in-water core. First, surfactants are screened to stabilize octanol-in-water emulsions for the picoreactor core. With these optimized conditions, stable triple emulsion picoreactors (>70% of droplets survived to 24 hr), produced protein in the biphasic core via cell-free protein synthesis are generated, and sorted these triple emulsions based on fluorescence using a commercial FACS sorter at >100 Hz with 75-80% of droplets recovered. Finally, an in-droplet lipase assay with a fluorogenic resorufin substrate that partitions into octanol is demonstrated. These triple emulsion picoreactors have the potential for future screening bead-encoded catalyst libraries, including enzymes such as lipases for biofuel production.
FACS-Sortable Triple Emulsion Picoreactors for Screening Reactions in Biphasic Environments.
阅读:5
作者:Thompson Samuel, Zhang Yanrong, Yang Zijian, Nichols Lisa, Fordyce Polly M
| 期刊: | Advanced Materials Interfaces | 影响因子: | 4.400 |
| 时间: | 2025 | 起止号: | 2025 Feb 3; 12(3):2400403 |
| doi: | 10.1002/admi.202400403 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
