An automated pipeline for bouton, spine, and synapse detection of in vivo two-photon images.

阅读:3
作者:Xie Qiwei, Chen Xi, Deng Hao, Liu Danqian, Sun Yingyu, Zhou Xiaojuan, Yang Yang, Han Hua
BACKGROUND: In the nervous system, the neurons communicate through synapses. The size, morphology, and connectivity of these synapses are significant in determining the functional properties of the neural network. Therefore, they have always been a major focus of neuroscience research. Two-photon laser scanning microscopy allows the visualization of synaptic structures in vivo, leading to many important findings. However, the identification and quantification of structural imaging data currently rely heavily on manual annotation, a method that is both time-consuming and prone to bias. RESULTS: We present an automated approach for the identification of synaptic structures in two-photon images. Axon boutons and dendritic spines are structurally distinct. They can be detected automatically using this image processing method. Then, synapses can be identified by integrating information from adjacent axon boutons and dendritic spines. In this study, we first detected the axonal boutons and dendritic spines respectively, and then identified synapses based on these results. Experimental results were validated manually, and the effectiveness of our proposed method was demonstrated. CONCLUSIONS: This approach will helpful for neuroscientists to automatically analyze and quantify the formation, elimination and destabilization of the axonal boutons, dendritic spines and synapses.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。