The challenge of precise dynamic positioning for mobile robots is addressed through the development of a multi-inertial navigation system (M-INSs). The inherent cumulative sensor errors prevalent in traditional single inertial navigation systems (INSs) under dynamic conditions are mitigated by a novel algorithm, integrating multiple INS units in a predefined planar configuration, utilizing fixed distances between the units as invariant constraints. An extended Kalman filter (EKF) is employed to significantly enhance the positioning accuracy. Dynamic experimental validation of the proposed 3INS EKF algorithm reveals a marked improvement over individual INS units, with the positioning errors reduced and stability increased, resulting in an average accuracy enhancement rate exceeding 60%. This advancement is particularly critical for mobile robot applications that demand high precision, such as autonomous driving and disaster search and rescue. The findings from this study not only demonstrate the potential of M-INSs to improve dynamic positioning accuracy but also to provide a new research direction for future advancements in robotic navigation systems.
A Planar Multi-Inertial Navigation Strategy for Autonomous Systems for Signal-Variable Environments.
阅读:4
作者:Dong Wenbin, Lu Cheng, Bao Le, Li Wenqi, Shin Kyoosik, Han Changsoo
| 期刊: | Sensors | 影响因子: | 3.500 |
| 时间: | 2024 | 起止号: | 2024 Feb 6; 24(4):1064 |
| doi: | 10.3390/s24041064 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
