A key challenge in understanding subcellular organization is quantifying interpretable measurements of intracellular structures with complex multi-piece morphologies in an objective, robust and generalizable manner. Here we introduce a morphology-appropriate representation learning framework that uses three-dimensional rotation-invariant autoencoders and point clouds. This framework is used to learn representations of complex shapes that are independent of orientation, compact and interpretable. We apply our framework to intracellular structures with punctate morphologies (for example, DNA replication foci) and polymorphic morphologies (for example, nucleoli). We explore the trade-offs in the performance of this framework compared to image-based autoencoders by performing multi-metric benchmarking across efficiency, generative capability and representation expressivity metrics. We find that the proposed framework, which embraces the underlying morphology of multi-piece structures, can facilitate the unsupervised discovery of subclusters for each structure. We show how this approach can also be applied to phenotypic profiling using a dataset of nucleolar images following drug perturbations.
Interpretable representation learning for 3D multi-piece intracellular structures using point clouds.
阅读:10
作者:Vasan Ritvik, Ferrante Alexandra J, Borensztejn Antoine, Frick Christopher L, Garrison Philip, Gaudreault Nathalie, Mogre Saurabh S, Mohammed Fatwir S, Morris Benjamin, Pires Guilherme G, Saelid Daniel, Rafelski Susanne M, Theriot Julie A, Viana Matheus P
| 期刊: | Nature Methods | 影响因子: | 32.100 |
| 时间: | 2025 | 起止号: | 2025 Jul;22(7):1531-1544 |
| doi: | 10.1038/s41592-025-02729-9 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
