As the chemical industry shifts toward sustainable practices, there is a growing initiative to replace conventional fossil-derived solvents with environmentally friendly alternatives such as ionic liquids (ILs) and deep eutectic solvents (DESs). Artificial intelligence (AI) plays a key role in the discovery and design of novel solvents and the development of green processes. This review explores the latest advancements in AI-assisted solvent screening with a specific focus on machine learning (ML) models for physicochemical property prediction and separation process design. Additionally, this paper highlights recent progress in the development of automated high-throughput (HT) platforms for solvent screening. Finally, this paper discusses the challenges and prospects of ML-driven HT strategies for green solvent design and optimization. To this end, this review provides key insights to advance solvent screening strategies for future chemical and separation processes.
Solvent Screening for Separation Processes Using Machine Learning and High-Throughput Technologies.
阅读:6
作者:Edaugal Justin P, Zhang Difan, Liu Dupeng, Glezakou Vassiliki-Alexandra, Sun Ning
| 期刊: | Chem Bio Eng | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 Mar 5; 2(4):210-228 |
| doi: | 10.1021/cbe.4c00170 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
