Improving the Accuracy of Direct Geo-referencing of Smartphone-Based Mobile Mapping Systems Using Relative Orientation and Scene Geometric Constraints.

阅读:3
作者:Alsubaie Naif M, Youssef Ahmed A, El-Sheimy Naser
This paper introduces a new method which facilitate the use of smartphones as a handheld low-cost mobile mapping system (MMS). Smartphones are becoming more sophisticated and smarter and are quickly closing the gap between computers and portable tablet devices. The current generation of smartphones are equipped with low-cost GPS receivers, high-resolution digital cameras, and micro-electro mechanical systems (MEMS)-based navigation sensors (e.g., accelerometers, gyroscopes, magnetic compasses, and barometers). These sensors are in fact the essential components for a MMS. However, smartphone navigation sensors suffer from the poor accuracy of global navigation satellite System (GNSS), accumulated drift, and high signal noise. These issues affect the accuracy of the initial Exterior Orientation Parameters (EOPs) that are inputted into the bundle adjustment algorithm, which then produces inaccurate 3D mapping solutions. This paper proposes new methodologies for increasing the accuracy of direct geo-referencing of smartphones using relative orientation and smartphone motion sensor measurements as well as integrating geometric scene constraints into free network bundle adjustment. The new methodologies incorporate fusing the relative orientations of the captured images and their corresponding motion sensor measurements to improve the initial EOPs. Then, the geometric features (e.g., horizontal and vertical linear lines) visible in each image are extracted and used as constraints in the bundle adjustment procedure which correct the relative position and orientation of the 3D mapping solution.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。