The potential of a metabolomics method to detect statistically significant perturbations in the metabolome of an organism is enhanced by excellent analytical precision, unequivocal identification, and broad metabolomic coverage. While the former two metrics are usually associated with targeted metabolomics and the latter with non-targeted metabolomics, a systematic comparison of the performance of both approaches has not yet been carried out. The present work reports on the development and performance evaluation of separate targeted and non-targeted metabolomics methods. The targeted approach facilitated determination of 181 metabolites (quantitative analysis of 18 amino acids, 11 biogenic amines, 5 neurotransmitters, 5 nucleobases and semi-quantitative analysis of 50 carnitines, 83 phosphatidylcholines, and 9 sphingomyelins) using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and flow injection-tandem mass spectrometry (FI-MS/MS). Method accuracy and/or precision were assessed using replicate samples of NIST SRM1950 as well as fish liver and brain tissue from Gilthead Bream (Sparus aurata). The non-target approach involved UPLC-high resolution (Orbitrap) mass spectrometry (UPLC-HRMS). Testing of ionization mode and stationary phase revealed that a combination of positive electrospray ionization and HILIC chromatography produced the largest number of chromatographic features during non-target analysis. Furthermore, an evaluation of 4 different sequence drift correction algorithms, and combinations thereof, revealed that batchCorr produced the best precision in almost every test. However, even following correction of non-target data for signal drift, the precision of targeted data was better, confirming our existing assumptions about the strengths of targeted metabolomics. Finally, the accuracy of the online MS2-library mzCloud was evaluated using reference standards for 38 different metabolites. This is among the few studies that have systematically evaluated the performance of targeted and non-targeted metabolomics and provides new insight into the advantages and disadvantages of each approach.
Development, characterization and comparisons of targeted and non-targeted metabolomics methods.
阅读:3
作者:Ribbenstedt Anton, Ziarrusta Haizea, Benskin Jonathan P
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2018 | 起止号: | 2018 Nov 15; 13(11):e0207082 |
| doi: | 10.1371/journal.pone.0207082 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
