Probabilistic framework for integration of mass spectrum and retention time information in small molecule identification.

阅读:4
作者:Bach Eric, Rogers Simon, Williamson John, Rousu Juho
MOTIVATION: Identification of small molecules in a biological sample remains a major bottleneck in molecular biology, despite a decade of rapid development of computational approaches for predicting molecular structures using mass spectrometry (MS) data. Recently, there has been increasing interest in utilizing other information sources, such as liquid chromatography (LC) retention time (RT), to improve identifications solely based on MS information, such as precursor mass-per-charge and tandem mass spectrometry (MS2). RESULTS: We put forward a probabilistic modelling framework to integrate MS and RT data of multiple features in an LC-MS experiment. We model the MS measurements and all pairwise retention order information as a Markov random field and use efficient approximate inference for scoring and ranking potential molecular structures. Our experiments show improved identification accuracy by combining MS2 data and retention orders using our approach, thereby outperforming state-of-the-art methods. Furthermore, we demonstrate the benefit of our model when only a subset of LC-MS features has MS2 measurements available besides MS1. AVAILABILITY AND IMPLEMENTATION: Software and data are freely available at https://github.com/aalto-ics-kepaco/msms_rt_score_integration. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。