MOTIVATION: Understanding the dynamics of gene expression across different cellular states is crucial for discerning the mechanisms underneath cellular differentiation. Genes that exhibit variation in mean expression as a function of Pseudotime and between branching trajectories are expected to govern cell fate decisions. We introduce scMaSigPro, a method for the identification of differential gene expression patterns along Pseudotime and branching paths simultaneously. RESULTS: We assessed the performance of scMaSigPro using synthetic and public datasets. Our evaluation shows that scMaSigPro outperforms existing methods in controlling the False Positive Rate and is computationally efficient. AVAILABILITY AND IMPLEMENTATION: scMaSigPro is available as a free R package (version 4.0 or higher) under the GPL(â¥2) license on GitHub at 'github.com/BioBam/scMaSigPro' and archived with version 0.03 on Zenodo at 'zenodo.org/records/12568922'.
scMaSigPro: Differential Expression Analysis along Single-Cell Trajectories.
阅读:3
作者:Srivastava Priyansh, Benegas Coll Marta, Götz Stefan, Nueda MarÃa José, Conesa Ana
| 期刊: | Bioinformatics | 影响因子: | 5.400 |
| 时间: | 2024 | 起止号: | 2024 Jul 8; 40(7):btae443 |
| doi: | 10.1093/bioinformatics/btae443 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
