Research into Prediction Method for Pressure Pulsations in a Centrifugal Pump Based on Variational Mode Decomposition-Particle Swarm Optimization and Hybrid Deep Learning Models.

阅读:4
作者:Lu Jiaxing, Zhou Yuzhuo, Ge Yanlong, Liu Jiahong, Zhang Chuan
Centrifugal pump pressure pulsation contains various signals in different frequency domains, which interact and superimpose on each other, resulting in characteristics such as intermittency, non-stationarity, and complexity. Computational Fluid Dynamics (CFD) and traditional time series models are unable to handle nonlinear and non-smooth problems, resulting in low accuracy in the prediction of pressure fluctuations. Therefore, this study proposes a new method for predicting pressure fluctuations. The pressure pulsation signals at the inlet of the centrifugal pump are processed using Variational Mode Decomposition-Particle Swarm Optimization (VMD-PSO), and the signal is predicted by Convolutional Neural Networks-Long Short-Term Memory (CNN-LSTM) model. The results indicate that the proposed prediction model combining VMD-PSO with four neural networks outperforms the single neural network prediction model in terms of prediction accuracy. Relatively high accuracy is achieved by the VMD-PSO-CNN-LSTM model for multiple forward prediction steps, particularly for a forward prediction step of 1 (Pre = 1), with a root mean square error of 0.03145 and an average absolute percentage error of 1.007%. This study provides a scientific basis for the intelligent operation of centrifugal pumps.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。