Feature finding is a common way to process untargeted mass spectrometry (MS) data to obtain a list of chemicals present in a sample. Most feature finding algorithms naïvely search for patterns of unique descriptors (e.g., m/z, retention time, and mobility) and provide a list of unannotated features. There is a need for solutions in processing untargeted MS data, independent of chemical or origin, to assess features based on measurement quality with the aim of improving interpretation. Here, we report the signal response evaluation as a method by which to assess the individual features observed in untargeted MS data. The basis of this method is the ubiquitous relationship between the amount and response in all MS measurements. Three different metrics with user-defined parameters can be used to assess the monotonic or linear relationship of each feature in a dilution series or multiple injection volumes. We demonstrate this approach in metabolomics data obtained from a uniform biological matrix (NIST SRM 1950) and a variable biological matrix (murine kidney tissue). The code is provided to facilitate implementation of this data processing method.
Signal Response Evaluation Applied to Untargeted Mass Spectrometry Data to Improve Data Interpretability.
阅读:4
作者:Overdahl Kirsten E, Collier Justin B, Jetten Anton M, Jarmusch Alan K
| 期刊: | Journal of the American Society for Mass Spectrometry | 影响因子: | 2.700 |
| 时间: | 2023 | 起止号: | 2023 Sep 6; 34(9):1941-1948 |
| doi: | 10.1021/jasms.3c00220 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
