This study introduces a new de novo design algorithm called GENERA that combines the capabilities of a deep-learning algorithm for automated drug-like analogue design, called DeLA-Drug, with a genetic algorithm for generating molecules with desired target-oriented properties. Specifically, GENERA was applied to the angiotensin-converting enzyme 2 (ACE2) target, which is implicated in many pathological conditions, including COVID-19. The ability of GENERA to de novo design promising candidates for a specific target was assessed using two docking programs, PLANTS and GLIDE. A fitness function based on the Pareto dominance resulting from computed PLANTS and GLIDE scores was applied to demonstrate the algorithm's ability to perform multiobjective optimizations effectively. GENERA can quickly generate focused libraries that produce better scores compared to a starting set of known ACE-2 binders. This study is the first to utilize a DL-based algorithm designed for analogue generation as a mutational operator within a GA framework, representing an innovative approach to target-oriented de novo design.
GENERA: A Combined Genetic/Deep-Learning Algorithm for Multiobjective Target-Oriented De Novo Design.
阅读:4
作者:Lamanna Giuseppe, Delre Pietro, Marcou Gilles, Saviano Michele, Varnek Alexandre, Horvath Dragos, Mangiatordi Giuseppe Felice
| 期刊: | Journal of Chemical Information and Modeling | 影响因子: | 5.300 |
| 时间: | 2023 | 起止号: | 2023 Aug 28; 63(16):5107-5119 |
| doi: | 10.1021/acs.jcim.3c00963 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
