We present a Î-machine learning approach for the prediction of GW quasiparticle energies (ÎMLQP) and photoelectron spectra of molecules and clusters, using orbital-sensitive representations (OSRs) based on molecular Cartesian coordinates in kernel ridge regression-based supervised learning. Coulomb matrix, bag-of-bond, and bond-angle-torsion representations are made orbital-sensitive by augmenting them with atom-centered orbital charges and Kohn-Sham orbital energies, both of which are readily available from baseline calculations at the level of density functional theory (DFT). We first illustrate the effects of different constructions of the OSRs on the prediction of frontier orbital energies of 22k molecules of the QM8 data set and show that it is possible to predict the full photoelectron spectrum of molecules within the data set using a single model with a mean absolute error below 0.1 eV. We further demonstrate that the OSR-based ÎMLQP captures the effects of intra- and intermolecular conformations in application to water monomers and dimers. Finally, we show that the approach can be embedded in multiscale simulation workflows, by studying the solvatochromic shifts of quasiparticle and electron-hole excitation energies of solvated acetone in a setup combining molecular dynamics, DFT, the GW approximation, and the Bethe-Salpeter equation. Our findings suggest that the ÎMLQP model allows us to predict quasiparticle energies and photoelectron spectra of molecules and clusters with GW accuracy at DFT cost.
Machine Learning of Quasiparticle Energies in Molecules and Clusters.
阅读:4
作者:Ãaylak Onur, Baumeier Björn
| 期刊: | Journal of Chemical Theory and Computation | 影响因子: | 5.500 |
| 时间: | 2021 | 起止号: | 2021 Aug 10; 17(8):4891-4900 |
| doi: | 10.1021/acs.jctc.1c00520 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
