A Numerical Simulation Method for the One-Step Compression-Stamping Process of Continuous Fiber Reinforced Thermoplastic Composites.

阅读:3
作者:Chen Lu, Deng Tianzhengxiong, Zhou Helezi, Huang Zhigao, Peng Xiongqi, Zhou Huamin
Continuous fiber reinforced thermoplastic (CFRTP) composites have many advantages, such as high strength, high stiffness, shorter cycle, time and enabling the part consolidation of structural components. However, the mass production of the CFRTP parts is still challenging in industry and simulations can be used to better understand internal molding mechanisms. This paper proposes a three-dimensional simulation method for a one-step compression-stamping process which can conduct thermoplastic compression molding and continuous fiber reinforced thermoplastic composite stamping forming in one single mold, simultaneously. To overcome the strongly coupled non-isothermal moving boundary between the polymer and the composites, arbitrary Lagrangian-Eulerian based Navier-Stokes equations were applied to solve the thermoplastic compression, and a fiber rotation based objective stress rate model was used to solve for the composite stamping. Meanwhile, a strongly coupled fluid structure interaction framework with dual mesh technology is proposed to address the non-isothermal moving boundary issue between the polymer and the composites. This simulation method was compared against the experimental results to verify its accuracy. The polymer flow fronts were measured at different molding stages and the error between simulation and experiment was within 3.5%. The final composites' in-plane deformation error was less than 2.5%. The experiment shows that this work can accurately simulate the actual molding process.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。