Accurate segmentation of the prostate peripheral zone (PZ) in T2-weighted MRI is critical for the early detection of prostate cancer. Existing segmentation methods are hindered by significant inter-observer variability (37.4 ± 5.6%), poor boundary localization, and the presence of motion artifacts, along with challenges in clinical integration. In this study, we propose BioAug-Net, a novel framework that integrates real-time physiological signal feedback with MRI data, leveraging transformer-based attention mechanisms and a probabilistic clinical decision support system (PCDSS). BioAug-Net features a dual-branch asymmetric attention mechanism: one branch processes spatial MRI features, while the other incorporates temporal sensor signals through a BiGRU-driven adaptive masking module. Additionally, a Markov Decision Process-based PCDSS maps segmentation outputs to clinical PI-RADS scores, with uncertainty quantification. We validated BioAug-Net on a multi-institutional dataset (n=1,542) and demonstrated state-of-the-art performance, achieving a Dice Similarity Coefficient of 89.7% (p < 0.001), sensitivity of 91.2% (p < 0.001), specificity of 88.4% (p < 0.001), and HD95 of 2.14 mm (p < 0.001), outperforming U-Net, Attention U-Net, and TransUNet. Sensor integration improved segmentation accuracy by 12.6% (p < 0.001) and reduced inter-observer variation by 48.3% (p < 0.001). Radiologist evaluations (n=3) confirmed a 15.0% reduction in diagnosis time (p = 0.003) and an increase in inter-reader agreement from K = 0.68 to K = 0.82 (p = 0.001). Our results show that BioAug-Net offers a clinically viable solution for early prostate cancer detection through enhanced physiological coupling and explainable AI diagnostics.
BioAug-Net: a bioimage sensor-driven attention-augmented segmentation framework with physiological coupling for early prostate cancer detection in T2-weighted MRI.
阅读:11
作者:Arshad Muhammad, Wang Chengliang, Us Sima Muhammad Wajeeh, Ali Shaikh Jamshed, Karamti Hanen, Alharthi Raed, Selecky Julius
| 期刊: | Biodata Mining | 影响因子: | 6.100 |
| 时间: | 2025 | 起止号: | 2025 Jul 29; 18(1):49 |
| doi: | 10.1186/s13040-025-00467-4 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
