AI-Driven Defect Engineering for Advanced Thermoelectric Materials.

阅读:4
作者:Fu Chu-Liang, Cheng Mouyang, Hung Nguyen Tuan, Rha Eunbi, Chen Zhantao, Okabe Ryotaro, Carrizales Denisse Córdova, Mandal Manasi, Cheng Yongqiang, Li Mingda
Thermoelectric materials offer a promising pathway to directly convert waste heat to electricity. However, achieving high performance remains challenging due to intrinsic trade-offs between electrical conductivity, the Seebeck coefficient, and thermal conductivity, which are further complicated by the presence of defects. This review explores how artificial intelligence (AI) and machine learning (ML) are transforming thermoelectric materials design. Advanced ML approaches including deep neural networks, graph-based models, and transformer architectures, integrated with high-throughput simulations and growing databases, effectively capture structure-property relationships in a complex multiscale defect space and overcome the "curse of dimensionality". This review discusses AI-enhanced defect engineering strategies such as composition optimization, entropy and dislocation engineering, and grain boundary design, along with emerging inverse design techniques for generating materials with targeted properties. Finally, it outlines future opportunities in novel physics mechanisms and sustainability, highlighting the critical role of AI in accelerating the discovery of thermoelectric materials.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。