Purpose. Patient motion artifacts present a prevalent challenge to image quality in interventional cone-beam CT (CBCT). We propose a novel reference-free similarity metric (DL-VIF) that leverages the capability of deep convolutional neural networks (CNN) to learn features associated with motion artifacts within realistic anatomical features. DL-VIF aims to address shortcomings of conventional metrics of motion-induced image quality degradation that favor characteristics associated with motion-free images, such as sharpness or piecewise constancy, but lack any awareness of the underlying anatomy, potentially promoting images depicting unrealistic image content. DL-VIF was integrated in an autofocus motion compensation framework to test its performance for motion estimation in interventional CBCT.Methods. DL-VIF is a reference-free surrogate for the previously reported visual image fidelity (VIF) metric, computed against a motion-free reference, generated using a CNN trained using simulated motion-corrupted and motion-free CBCT data. Relatively shallow (2-ResBlock) and deep (3-Resblock) CNN architectures were trained and tested to assess sensitivity to motion artifacts and generalizability to unseen anatomy and motion patterns. DL-VIF was integrated into an autofocus framework for rigid motion compensation in head/brain CBCT and assessed in simulation and cadaver studies in comparison to a conventional gradient entropy metric.Results. The 2-ResBlock architecture better reflected motion severity and extrapolated to unseen data, whereas 3-ResBlock was found more susceptible to overfitting, limiting its generalizability to unseen scenarios. DL-VIF outperformed gradient entropy in simulation studies yielding average multi-resolution structural similarity index (SSIM) improvement over uncompensated image of 0.068 and 0.034, respectively, referenced to motion-free images. DL-VIF was also more robust in motion compensation, evidenced by reduced variance in SSIM for various motion patterns (Ï(DL-VIF)Â =Â 0.008 versusÏ(gradient entropy)Â =Â 0.019). Similarly, in cadaver studies, DL-VIF demonstrated superior motion compensation compared to gradient entropy (an average SSIM improvement of 0.043 (5%) versus little improvement and even degradation in SSIM, respectively) and visually improved image quality even in severely motion-corrupted images.Conclusion: The studies demonstrated the feasibility of building reference-free similarity metrics for quantification of motion-induced image quality degradation and distortion of anatomical structures in CBCT. DL-VIF provides a reliable surrogate for motion severity, penalizes unrealistic distortions, and presents a valuable new objective function for autofocus motion compensation in CBCT.
Reference-free learning-based similarity metric for motion compensation in cone-beam CT.
阅读:14
作者:Huang H, Siewerdsen J H, Zbijewski W, Weiss C R, Unberath M, Ehtiati T, Sisniega A
| 期刊: | Physics in Medicine and Biology | 影响因子: | 3.400 |
| 时间: | 2022 | 起止号: | 2022 Jun 16; 67(12):10 |
| doi: | 10.1088/1361-6560/ac749a | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
