A Secure IIoT Environment That Integrates AI-Driven Real-Time Short-Term Active and Reactive Load Forecasting with Anomaly Detection: A Real-World Application.

阅读:3
作者:Joha Md Ibne, Rahman Md Minhazur, Nazim Md Shahriar, Jang Yeong Min
The Industrial Internet of Things (IIoT) revolutionizes both industrial and residential operations by integrating AI (artificial intelligence)-driven analytics with real-time monitoring, optimizing energy usage, and significantly enhancing energy efficiency. This study proposes a secure IIoT framework that simultaneously predicts both active and reactive loads while also incorporating anomaly detection. The system is optimized for real-time deployment on an edge server, such as a single-board computer (SBC), as well as on a cloud or centralized server. It ensures secure and reliable industrial operations by integrating smart data acquisition systems with real-time monitoring, control, and protective measures. We propose a Temporal Convolutional Networks-Gated Recurrent Unit-Attention (TCN-GRU-Attention) model to predict both active and reactive loads, which demonstrates superior performance compared to other conventional models. The performance metrics for active load forecasting are 0.0183 Mean Squared Error (MSE), 0.1022 Mean Absolute Error (MAE), and 0.1354 Root Mean Squared Error (RMSE), while for reactive load forecasting, the metrics are 0.0202 (MSE), 0.1077 (MAE), and 0.1422 (RMSE). Furthermore, we introduce an optimized Isolation Forest model for anomaly detection that considers the transient conditions of appliances when identifying irregular behavior. The model demonstrates very promising performance, with the average performance metrics for all appliances using this Isolation Forest model being 95% for Precision, 98% for Recall, 96% for F1 Score, and nearly 100% for Accuracy. To secure the entire system, Transport Layer Security (TLS) and Secure Sockets Layer (SSL) security protocols are employed, along with hash-encoded encrypted credentials for enhanced protection.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。