PURPOSE: To facilitate the demonstration of the prognostic value of radiomics, multicenter radiomics studies are needed. Pooling radiomic features of such data in a statistical analysis is however challenging, as they are sensitive to the variability in scanner models, acquisition protocols and reconstruction settings, which is often unavoidable in a multicentre retrospective analysis. A statistical harmonization strategy called ComBat was utilized in radiomics studies to deal with the "center-effect". The goal of the present work was to integrate a transfer learning (TL) technique within ComBat-and recently developed alternate versions of ComBat with improved flexibility (M-ComBat) and robustness (B-ComBat)-to allow the use of a previously determined harmonization transform to the radiomic feature values of new patients from an already known center. MATERIAL AND METHODS: The proposed TL approach were incorporated in the four versions of ComBat (standard, B, M, and B-M ComBat). The proposed approach was evaluated using a dataset of 189 locally advanced cervical cancer patients from 3 centers, with magnetic resonance imaging (MRI) and positron emission tomography (PET) images, with the clinical endpoint of predicting local failure. The impact performance of the TL approach was evaluated by comparing the harmonization achieved using only parts of the data to the reference (harmonization achieved using all the available data). It was performed through three different machine learning pipelines. RESULTS: The proposed TL technique was successful in harmonizing features of new patients from a known center in all versions of ComBat, leading to predictive models reaching similar performance as the ones developed using the features harmonized with all the data available. CONCLUSION: The proposed TL approach enables applying a previously determined ComBat transform to new, previously unseen data.
A transfer learning approach to facilitate ComBat-based harmonization of multicentre radiomic features in new datasets.
阅读:6
作者:Da-Ano Ronrick, Lucia François, Masson Ingrid, Abgral Ronan, Alfieri Joanne, Rousseau Caroline, Mervoyer Augustin, Reinhold Caroline, Pradier Olivier, Schick Ulrike, Visvikis Dimitris, Hatt Mathieu
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2021 | 起止号: | 2021 Jul 1; 16(7):e0253653 |
| doi: | 10.1371/journal.pone.0253653 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
