Detecting brain tumours (BT) early improves treatment possibilities and increases patient survival rates. Magnetic resonance imaging (MRI) scanning offers more comprehensive information, such as better contrast and clarity, than any alternative scanning process. Manually separating BTs from several MRI images gathered in medical practice for cancer analysis is challenging and time-consuming. Tumours and MRI scans of the brain are exposed utilizing methods and machine learning technologies, simplifying the process for doctors. MRI images can sometimes appear normal even when a patient has a tumour or malignancy. Deep learning approaches have recently depended on deep convolutional neural networks to analyze medical images with promising outcomes. It supports saving lives faster and rectifying some medical errors. With this motivation, this article presents a new explainable artificial intelligence with semantic segmentation and Bayesian machine learning for brain tumors (XAISS-BMLBT) technique. The presented XAISS-BMLBT technique mainly concentrates on the semantic segmentation and classification of BT in MRI images. The presented XAISS-BMLBT approach initially involves bilateral filtering-based image pre-processing to eliminate the noise. Next, the XAISS-BMLBT technique performs the MEDU-Net+ segmentation process to define the impacted brain regions. For the feature extraction process, the ResNet50 model is utilized. Furthermore, the Bayesian regularized artificial neural network (BRANN) model is used to identify the presence of BTs. Finally, an improved radial movement optimization model is employed for the hyperparameter tuning of the BRANN technique. To highlight the improved performance of the XAISS-BMLBT technique, a series of simulations were accomplished by utilizing a benchmark database. The experimental validation of the XAISS-BMLBT technique portrayed a superior accuracy value of 97.75% over existing models.
Explainable artificial intelligence with UNet based segmentation and Bayesian machine learning for classification of brain tumors using MRI images.
阅读:5
作者:Lakshmi K, Amaran Sibi, Subbulakshmi G, Padmini S, Joshi Gyanenedra Prasad, Cho Woong
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Jan 3; 15(1):690 |
| doi: | 10.1038/s41598-024-84692-7 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
