Structured methods for parameter inference and uncertainty quantification for mechanistic models in the life sciences.

阅读:5
作者:Plank Michael J, Simpson Matthew J
Parameter inference and uncertainty quantification are important steps when relating mathematical models to real-world observations and when estimating uncertainty in model predictions. However, methods for doing this can be computationally expensive, particularly when the number of unknown model parameters is large. The aim of this study is to develop and test an efficient profile likelihood-based method, which takes advantage of the structure of the mathematical model being used. We do this by identifying specific parameters that affect model output in a known way, such as a linear scaling. We illustrate the method by applying it to three toy models from different areas of the life sciences: (i) a predator-prey model from ecology; (ii) a compartment-based epidemic model from health sciences; and (iii) an advection-diffusion reaction model describing the transport of dissolved solutes from environmental science. We show that the new method produces results of comparable accuracy to existing profile likelihood methods but with substantially fewer evaluations of the forward model. We conclude that our method could provide a much more efficient approach to parameter inference for models where a structured approach is feasible. Computer code to apply the new method to user-supplied models and data is provided via a publicly accessible repository.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。