Classification and clustering analysis of pyruvate dehydrogenase enzyme based on their physicochemical properties.

阅读:9
作者:Banerjee Amit Kumar, M Sunita, M Naveen, Murty Upadhyayula Suryanarayana
Biological systems are highly organized and enormously coordinated maintaining greater complexity. The increment of secondary data generation and progress of modern mining techniques provided us an opportunity to discover hidden intra and inter relations among these non linear dataset. This will help in understanding the complex biological phenomenon with greater efficiency. In this paper we report comparative classification of Pyruvate Dehydrogenase protein sequences from bacterial sources based on 28 different physicochemical parameters (such as bulkiness, hydrophobicity, total positively and negatively charged residues, α helices, β strand etc.) and 20 type amino acid compositions. Logistic, MLP (Multi Layer Perceptron), SMO (Sequential Minimal Optimization), RBFN (Radial Basis Function Network) and SL (simple logistic) methods were compared in this study. MLP was found to be the best method with maximum average accuracy of 88.20%. Same dataset was subjected for clustering using 2*2 grid of a two dimensional SOM (Self Organizing Maps). Clustering analysis revealed the proximity of the unannotated sequences with the Mycobacterium and Synechococcus genus.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。