Diabetic retinopathy(DR) is a health condition that affects the retinal blood vessels(BV) and arises in over half of people living with diabetes. Exudates(EX) are significant indications of DR. Early detection and treatment can prevent vision loss in many cases. EX detection is a challenging problem for ophthalmologists due to its different sizes and elevations as retinal fundus images frequently have irregular illumination and are poorly contrasting. Manual detection of EX is a time-consuming process to diagnose a mass number of diabetic patients. In the domain of signal processing, both SIFT (scale-invariant feature transform) and SURF (speed-up robust feature) methods are predominant in scale-invariant location retrieval and have shown a range of advantages. But, when extended to medical images with corresponding weak contrast between reference features and neighboring areas, these methods cannot differentiate significant features. Considering these, in this paper, a novel method is proposed based on modified KAZE features, which is an emerging technique to extract feature points and extreme learning machine autoencoders(ELMAE) for robust and fast localization of the EX in fundus images. The main stages of the proposed method are pre-processing, OD localization, dimensionality reduction using ELMAE, and EX localization. The proposed method is evaluated based on the freely accessible retinal database DIARETDB0, DIARETDB1, e-Ophtha, MESSIDOR, and local retinal database collected from Silchar Medical College and Hospital(SMCH). The sensitivity, specificity, and accuracy obtained by the proposed method are 96.5%, 96.4%, and 97%, respectively, with the processing time of 3.19 seconds per image. The results of this study are satisfactory with state-of-the-art methods. The results indicate that the approach taken can detect EX with less processing time and accurately from the fundus images.
Fast and Robust Exudate Detection in Retinal Fundus Images Using Extreme Learning Machine Autoencoders and Modified KAZE Features.
阅读:13
作者:Mohan N Jagan, Murugan R, Goel Tripti, Roy Parthapratim
| 期刊: | Journal of Digital Imaging | 影响因子: | 3.800 |
| 时间: | 2022 | 起止号: | 2022 Jun;35(3):496-513 |
| doi: | 10.1007/s10278-022-00587-x | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
