OBJECTIVE: The aim of the study is to demonstrate whether radiomics based on an automatic segmentation method is feasible for predicting molecular subtypes. METHODS: This retrospective study included 516 patients with confirmed breast cancer. An automatic segmentation-3-dimensional UNet-based Convolutional Neural Networks, trained on our in-house data set-was applied to segment the regions of interest. A set of 1316 radiomics features per region of interest was extracted. Eighteen cross-combination radiomics methods-with 6 feature selection methods and 3 classifiers-were used for model selection. Model classification performance was assessed using the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity. RESULTS: The average dice similarity coefficient value of the automatic segmentation was 0.89. The radiomics models were predictive of 4 molecular subtypes with the best average: AUC = 0.8623, accuracy = 0.6596, sensitivity = 0.6383, and specificity = 0.8775. For luminal versus nonluminal subtypes, AUC = 0.8788 (95% confidence interval [CI], 0.8505-0.9071), accuracy = 0.7756, sensitivity = 0.7973, and specificity = 0.7466. For human epidermal growth factor receptor 2 (HER2)-enriched versus non-HER2-enriched subtypes, AUC = 0.8676 (95% CI, 0.8370-0.8982), accuracy = 0.7737, sensitivity = 0.8859, and specificity = 0.7283. For triple-negative breast cancer versus non-triple-negative breast cancer subtypes, AUC = 0.9335 (95% CI, 0.9027-0.9643), accuracy = 0.9110, sensitivity = 0.4444, and specificity = 0.9865. CONCLUSIONS: Radiomics based on automatic segmentation of magnetic resonance imaging can predict breast cancer of 4 molecular subtypes noninvasively and is potentially applicable in large samples.
Predicting Breast Cancer Subtypes Using Magnetic Resonance Imaging Based Radiomics With Automatic Segmentation.
阅读:10
作者:Yue Wen-Yi, Zhang Hong-Tao, Gao Shen, Li Guang, Sun Ze-Yu, Tang Zhe, Cai Jian-Ming, Tian Ning, Zhou Juan, Dong Jing-Hui, Liu Yuan, Bai Xu, Sheng Fu-Geng
| 期刊: | Journal of Computer Assisted Tomography | 影响因子: | 1.300 |
| 时间: | 2023 | 起止号: | 2023 Sep-Oct 01;47(5):729-737 |
| doi: | 10.1097/RCT.0000000000001474 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
