BACKGROUND: Escherichia coli is a well-studied anaerobic bacteria which is able to regulate metabolic pathways depending on the type of sugar presented in the medium. We have studied the glucose-lactose shift in E. coli at the protein level using a recently developed mass spectrometry platform. METHOD: Cells were grown in minimal medium containing two sugars (glucose and lactose) and analyzed using novel mass spectrometry cluster. The cluster combines the high resolving power and dynamic range of Fourier transform ion cyclotron resonance (FTICR) for accurate mass measurement and quantitation with multiple ion traps for fast and sensitive tandem mass spectrometry. The protein expression profile was followed in time across the glucose-lactose diauxic shift using label-free quantitation from the FTICR data. RESULTS AND CONCLUSION: The entire dataset was interrogated by KEGG pathway analysis, mapping measured changes in protein abundance onto known metabolic pathways. The obtained results were consistent with previously published gene expression data, with β-galactosidase being the most strongly induced protein during the diauxic shift.
Protein expression dynamics during Escherichia coli glucose-lactose diauxie.
阅读:4
作者:Mostovenko Ekaterina, Deelder André M, Palmblad Magnus
| 期刊: | BMC Microbiology | 影响因子: | 4.200 |
| 时间: | 2011 | 起止号: | 2011 Jun 1; 11:126 |
| doi: | 10.1186/1471-2180-11-126 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
