TRENDY: gene regulatory network inference enhanced by transformer.

阅读:16
作者:Tian Xueying, Patel Yash, Wang Yue
MOTIVATION: Gene regulatory networks (GRNs) play a crucial role in the control of cellular functions. Numerous methods have been developed to infer GRNs from gene expression data, including mechanism-based approaches, information-based approaches, and more recent deep learning techniques, the last of which often overlook the underlying gene expression mechanisms. RESULTS: In this work, we introduce TRENDY, a novel GRN inference method that integrates transformer models to enhance the mechanism-based WENDY approach. Through testing on both simulated and experimental datasets, TRENDY demonstrates superior performance compared to existing methods. Furthermore, we apply this transformer-based approach to three additional inference methods, showcasing its broad potential to enhance GRN inference. AVAILABILITY AND IMPLEMENTATION: Code and data files are available at https://github.com/YueWangMathbio/TRENDY, with DOI: 10.6084/m9.figshare.28236074.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。