Magnetoencephalographic (MEG) source estimation relies on the computation of the gain (lead-field) matrix, which embodies the linear relationship between the amplitudes of the sources and the recorded signals. However, with a realistic forward model, the calculation of the gain matrix in a "direct" fashion is a computationally expensive task because the number of dipolar sources in standard MEG pipelines is often limited to ~10,000. We propose a fast approach based on the reciprocal relationship between MEG and transcranial magnetic stimulation (TMS). This approach couples naturally with the charge-based boundary element fast multipole method (BEM-FMM), which allows us to efficiently generate gain matrices for high-resolution multi-layer non-nested meshes involving source spaces of up to a ~1 million dipoles. We evaluate our approach by performing MEG source reconstruction against simulated data (at varying noise levels) obtained from the direct computation of MEG readings from 2000 different dipole positions over the cortical surface of 5 healthy subjects. Additionally, we test our methods with real MEG data from evoked somatosensory fields by right-hand median nerve stimulation in these same 5 subjects. We compare our experimental source reconstruction results against the standard MNE-Python source reconstruction pipeline.
High-Definition MEG Source Estimation using the Reciprocal Boundary Element Fast Multipole Method.
阅读:3
作者:Ponasso Guillermo Nuñez, Drumm Derek A, Wang Abbie, Noetscher Gregory M, Hämäläinen Matti, Knösche Thomas R, Maess Burkhard, Haueisen Jens, Makaroff Sergey N, Raij Tommi
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 Mar 24 |
| doi: | 10.1101/2025.03.21.644601 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
