Cell-cell communication plays a critical role in maintaining normal biological functions, regulating development and differentiation, and controlling immune responses. The rapid development of single-cell RNA sequencing and spatial transcriptomics sequencing (ST-seq) technologies provides essential data support for in-depth and comprehensive analysis of cell-cell communication. However, ST-seq data often contain incomplete data and systematic biases, which may reduce the accuracy and reliability of predicting cell-cell communication. Furthermore, other methods for analyzing cell-cell communication mainly focus on individual tissue sections, neglecting cell-cell communication across multiple tissue layers, and fail to comprehensively elucidate cell-cell communication networks within three-dimensional tissues. To address the aforementioned issues, we propose VGAE-CCI, a deep learning framework based on the Variational Graph Autoencoder, capable of identifying cell-cell communication across multiple tissue layers. Additionally, this model can be applied to spatial transcriptomics data with missing or partially incomplete data and can clustered cells at single-cell resolution based on spatial encoding information within complex tissues, thereby enabling more accurate inference of cell-cell communication. Finally, we tested our method on six datasets and compared it with other state of art methods for predicting cell-cell communication. Our method outperformed other methods across multiple metrics, demonstrating its efficiency and reliability in predicting cell-cell communication.
VGAE-CCI: variational graph autoencoder-based construction of 3D spatial cell-cell communication network.
阅读:2
作者:Zhang Tianjiao, Zhang Xiang, Wu Zhenao, Ren Jixiang, Zhao Zhongqian, Zhang Hongfei, Wang Guohua, Wang Tao
| 期刊: | Briefings in Bioinformatics | 影响因子: | 7.700 |
| 时间: | 2024 | 起止号: | 2024 Nov 22; 26(1):bbae619 |
| doi: | 10.1093/bib/bbae619 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
