Genome-wide identification of binding profiles for DNA-binding proteins from the limited number of intracellular pathogens in infection studies is crucial for understanding virulence and cellular processes but remains challenging, as the current ChIP-exo is designed for high-input bacterial cells (>1010). Here, we developed an optimized ChIP-mini method, a low-input ChIP-exo utilizing a 5,000-fold reduced number of initial bacterial cells and an analysis pipeline, to identify genome-wide binding dynamics of DNA-binding proteins in host-infected pathogens. Applying ChIP-mini to intracellular Salmonella Typhimurium, we identified 642 and 1,837 binding sites of H-NS and RpoD, respectively, elucidating changes in their binding position and binding intensity during infection. Post-infection, we observed 21 significant reductions in H-NS binding at intergenic regions, exposing the promoter region of virulence genes, such as those in Salmonella pathogenicity islands-2, 3 and effectors. Furthermore, we revealed the crucial phenomenon that novel and significantly increased RpoD bindings were found within regions exhibiting diminished H-NS binding, thereby facilitating substantial upregulation of virulence genes. These findings markedly enhance our understanding of how H-NS and RpoD simultaneously coordinate the transcription initiation of virulence genes within macrophages. Collectively, this work demonstrates a broadly adaptable tool that will enable the elucidation of DNA-binding protein dynamics in diverse intracellular pathogens during infection.
ChIP-mini: a low-input ChIP-exo protocol for elucidating DNA-binding protein dynamics in intracellular pathogens.
阅读:14
作者:Park Joon Young, Jang Minchang, Choi Eunna, Lee Sang-Mok, Bang Ina, Woo Jihoon, Kim Seonggyu, Lee Eun-Jin, Kim Donghyuk
| 期刊: | Nucleic Acids Research | 影响因子: | 13.100 |
| 时间: | 2025 | 起止号: | 2025 Jan 24; 53(3):gkaf009 |
| doi: | 10.1093/nar/gkaf009 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
