Motion and Inertia Estimation for Non-Cooperative Space Objects During Long-Term Occlusion Based on UKF-GP.

阅读:6
作者:Kabir Rabiul Hasan, Bai Xiaoli
This study addresses the motion and inertia parameter estimation problem of a torque-free, tumbling, non-cooperative space object (target) under long-term occlusions. To solve this problem, we employ a data-driven Gaussian process (GP) to simulate sensor measurements. In particular, we implement the multi-output GP to predict the projection measurements of a stereo-camera system onboard a chaser spacecraft. A product kernel, consisting of two periodic kernels, is used in the GP models to capture the periodic trends from non-periodic projection data. The initial guesses for the periodicity hyper-parameters of the GP models are intelligently derived from fast Fourier transform (FFT) analysis of the projection data. Additionally, we propose an unscented Kalman filter-Gaussian process (UKF-GP) fusion algorithm for target motion and inertia parameter estimation. The predicted projections from the GP models and their derivatives are used as the pseudo-measurements for UKF-GP during long-term occlusion. Results from Monte Carlo (MC) simulations demonstrate that, for varying tumbling frequencies, the UKF-GP can accurately estimate the target's motion variables over hundreds of seconds, a capability the conventional UKF algorithm lacks.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。