This study addresses the motion and inertia parameter estimation problem of a torque-free, tumbling, non-cooperative space object (target) under long-term occlusions. To solve this problem, we employ a data-driven Gaussian process (GP) to simulate sensor measurements. In particular, we implement the multi-output GP to predict the projection measurements of a stereo-camera system onboard a chaser spacecraft. A product kernel, consisting of two periodic kernels, is used in the GP models to capture the periodic trends from non-periodic projection data. The initial guesses for the periodicity hyper-parameters of the GP models are intelligently derived from fast Fourier transform (FFT) analysis of the projection data. Additionally, we propose an unscented Kalman filter-Gaussian process (UKF-GP) fusion algorithm for target motion and inertia parameter estimation. The predicted projections from the GP models and their derivatives are used as the pseudo-measurements for UKF-GP during long-term occlusion. Results from Monte Carlo (MC) simulations demonstrate that, for varying tumbling frequencies, the UKF-GP can accurately estimate the target's motion variables over hundreds of seconds, a capability the conventional UKF algorithm lacks.
Motion and Inertia Estimation for Non-Cooperative Space Objects During Long-Term Occlusion Based on UKF-GP.
阅读:20
作者:Kabir Rabiul Hasan, Bai Xiaoli
| 期刊: | Sensors | 影响因子: | 3.500 |
| 时间: | 2025 | 起止号: | 2025 Jan 22; 25(3):647 |
| doi: | 10.3390/s25030647 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
