A deep learning-based system for automatic detection of emesis with high accuracy in Suncus murinus.

阅读:4
作者:Lu Zengbing, Qiao Yimeng, Huang Xiaofei, Cui Dexuan, Liu Julia Y H, Ngan Man Piu, Liu Luping, Huang Zhixin, Li Zi-Tong, Yang Lingqing, Khalid Aleena, Deng Yingyi, Chan Sze Wa, Tu Longlong, Rudd John A
Quantifying emesis in Suncus murinus (S. murinus) has traditionally relied on direct observation or reviewing recorded behaviour, which are laborious, time-consuming processes that are susceptible to operator error. With rapid advancements in deep learning, automated animal behaviour quantification tools with high accuracy have emerged. In this study, we pioneere the use of both three-dimensional convolutional neural networks and self-attention mechanisms to develop the Automatic Emesis Detection (AED) tool for the quantification of emesis in S. murinus, achieving an overall accuracy of 98.92%. Specifically, we use motion-induced emesis videos as training datasets, with validation results demonstrating an accuracy of 99.42% for motion-induced emesis. In our model generalisation and application studies, we assess the AED tool using various emetics, including resiniferatoxin, nicotine, copper sulphate, naloxone, U46619, cyclophosphamide, exendin-4, and cisplatin. The prediction accuracies for these emetics are 97.10%, 100%, 100%, 97.10%, 98.97%, 96.93%, 98.91%, and 98.41%, respectively. In conclusion, employing deep learning-based automatic analysis improves efficiency and accuracy and mitigates human bias and errors. Our study provides valuable insights into the development of deep learning neural network models aimed at automating the analysis of various behaviours in S. murinus, with potential applications in preclinical research and drug development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。