Accurate Models of Substrate Preferences of Post-Translational Modification Enzymes from a Combination of mRNA Display and Deep Learning.

阅读:11
作者:Vinogradov Alexander A, Chang Jun Shi, Onaka Hiroyasu, Goto Yuki, Suga Hiroaki
Promiscuous post-translational modification (PTM) enzymes often display nonobvious substrate preferences by acting on diverse yet well-defined sets of peptides and/or proteins. Understanding of substrate fitness landscapes for PTM enzymes is important in many areas of contemporary science, including natural product biosynthesis, molecular biology, and biotechnology. Here, we report an integrated platform for accurate profiling of substrate preferences for PTM enzymes. The platform features (i) a combination of mRNA display with next-generation sequencing as an ultrahigh throughput technique for data acquisition and (ii) deep learning for data analysis. The high accuracy (>0.99 in each of two studies) of the resulting deep learning models enables comprehensive analysis of enzymatic substrate preferences. The models can quantify fitness across sequence space, map modification sites, and identify important amino acids in the substrate. To benchmark the platform, we performed profiling of a Ser dehydratase (LazBF) and a Cys/Ser cyclodehydratase (LazDEF), two enzymes from the lactazole biosynthesis pathway. In both studies, our results point to complex enzymatic preferences, which, particularly for LazBF, cannot be reduced to a set of simple rules. The ability of the constructed models to dissect such complexity suggests that the developed platform can facilitate a wider study of PTM enzymes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。