Comparing Machine Learning and Binary Thresholding Methods for Quantification of Callose Deposits in the Citrus Phloem.

阅读:3
作者:Welker Stacy, Levy Amit
Callose is a polysaccharide that can be fluorescently stained to study many developmental and immune functions in plants. High-throughput methods to accurately gather quantitative measurements of callose from confocal images are useful for many applications in plant biology. Previous callose quantification methods relied upon binary local thresholding, which had the disadvantage of not being able to differentiate callose in conditions with low contrast from background material. Here, a measurement approach that utilizes the Ilastik supervised machine learning imagery data collection software is described. The Ilastik software method provided superior efficiency for acquiring counts of callose deposits. We also determined the accuracy of these methods as compared to manual counts. We demonstrate that the automated software methods are both good predictors of manual counts, but that the Ilastik counts are significantly closer. Researchers can use this information to guide their choice of method to quantify callose in their work.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。