Accelerated Chemical Reaction Optimization Using Multi-Task Learning.

阅读:5
作者:Taylor Connor J, Felton Kobi C, Wigh Daniel, Jeraal Mohammed I, Grainger Rachel, Chessari Gianni, Johnson Christopher N, Lapkin Alexei A
Functionalization of C-H bonds is a key challenge in medicinal chemistry, particularly for fragment-based drug discovery (FBDD) where such transformations require execution in the presence of polar functionality necessary for protein binding. Recent work has shown the effectiveness of Bayesian optimization (BO) for the self-optimization of chemical reactions; however, in all previous cases these algorithmic procedures have started with no prior information about the reaction of interest. In this work, we explore the use of multitask Bayesian optimization (MTBO) in several in silico case studies by leveraging reaction data collected from historical optimization campaigns to accelerate the optimization of new reactions. This methodology was then translated to real-world, medicinal chemistry applications in the yield optimization of several pharmaceutical intermediates using an autonomous flow-based reactor platform. The use of the MTBO algorithm was shown to be successful in determining optimal conditions of unseen experimental C-H activation reactions with differing substrates, demonstrating an efficient optimization strategy with large potential cost reductions when compared to industry-standard process optimization techniques. Our findings highlight the effectiveness of the methodology as an enabling tool in medicinal chemistry workflows, representing a step-change in the utilization of data and machine learning with the goal of accelerated reaction optimization.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。