Online Omics Platform Expedites Industrial Application of Halomonas bluephagenesis TD1.0.

阅读:5
作者:Park Helen, Faulkner Matthew, Toogood Helen S, Chen Guo-Qiang, Scrutton Nigel
Multi-omic data mining has the potential to revolutionize synthetic biology especially in non-model organisms that have not been extensively studied. However, tangible engineering direction from computational analysis remains elusive due to the interpretability of large datasets and the difficulty in analysis for non-experts. New omics data are generated faster than our ability to use and analyse results effectively, resulting in strain development that proceeds through classic methods of trial-and-error without insight into complex cell dynamics. Here we introduce a user-friendly, interactive website hosting multi-omics data. Importantly, this new platform allows non-experts to explore questions in an industrially important chassis whose cellular dynamics are still largely unknown. The web platform contains a complete KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis derived from principal components analysis, an interactive bio-cluster heatmap analysis of genes, and the Halomonas TD1.0 genome-scale metabolic (GEM) model. As a case study of the effectiveness of this platform, we applied unsupervised machine learning to determine key differences between Halomonas bluephagenesis TD1.0 cultivated under varied conditions. Specifically, cell motility and flagella apparatus are identified to drive energy expenditure usage at different osmolarities, and predictions were verified experimentally using microscopy and fluorescence labelled flagella staining. As more omics projects are completed, this landing page will facilitate exploration and targeted engineering efforts of the robust, industrial chassis H bluephagenesis for researchers without extensive bioinformatics background.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。