Modern optical coherence tomography (OCT) devices used in ophthalmology acquire steadily increasing amounts of imaging data. Thus, reliable automated quantitative analysis of OCT images is considered to be of utmost importance. Current automated retinal OCT layer segmentation methods work reliably on healthy or mildly diseased retinas, but struggle with the complex interaction of the layers with fluid accumulations in macular edema. In this work, we present a fully automated 3D method which is able to segment all the retinal layers and fluid-filled regions simultaneously, exploiting their mutual interaction to improve the overall segmentation results. The machine learning based method combines unsupervised feature representation and heterogeneous spatial context with a graph-theoretic surface segmentation. The method was extensively evaluated on manual annotations of 20,000 OCT B-scans from 100 scans of patients and on a publicly available data set consisting of 110 annotated B-scans from 10 patients, all with severe macular edema, yielding an overall mean Dice coefficient of 0.76 and 0.78, respectively.
Joint retinal layer and fluid segmentation in OCT scans of eyes with severe macular edema using unsupervised representation and auto-context.
阅读:3
作者:Montuoro Alessio, Waldstein Sebastian M, Gerendas Bianca S, Schmidt-Erfurth Ursula, BogunoviÄ Hrvoje
| 期刊: | Biomedical Optics Express | 影响因子: | 3.200 |
| 时间: | 2017 | 起止号: | 2017 Feb 27; 8(3):1874-1888 |
| doi: | 10.1364/BOE.8.001874 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
