Computer-Aided Drug Design towards New Psychotropic and Neurological Drugs.

阅读:3
作者:Dorahy Georgia, Chen Jake Zheng, Balle Thomas
Central nervous system (CNS) disorders are a therapeutic area in drug discovery where demand for new treatments greatly exceeds approved treatment options. This is complicated by the high failure rate in late-stage clinical trials, resulting in exorbitant costs associated with bringing new CNS drugs to market. Computer-aided drug design (CADD) techniques minimise the time and cost burdens associated with drug research and development by ensuring an advantageous starting point for pre-clinical and clinical assessments. The key elements of CADD are divided into ligand-based and structure-based methods. Ligand-based methods encompass techniques including pharmacophore modelling and quantitative structure activity relationships (QSARs), which use the relationship between biological activity and chemical structure to ascertain suitable lead molecules. In contrast, structure-based methods use information about the binding site architecture from an established protein structure to select suitable molecules for further investigation. In recent years, deep learning techniques have been applied in drug design and present an exciting addition to CADD workflows. Despite the difficulties associated with CNS drug discovery, advances towards new pharmaceutical treatments continue to be made, and CADD has supported these findings. This review explores various CADD techniques and discusses applications in CNS drug discovery from 2018 to November 2022.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。