Computed tomography angiography-based analysis of high-risk intracerebral haemorrhage patients by employing a mathematical model.

阅读:10
作者:Zhang Le, Li Jin, Yin Kaikai, Jiang Zhouyang, Li Tingting, Hu Rong, Yu Zheng, Feng Hua, Chen Yujie
BACKGROUND: Haemorrhagic stroke accounts for approximately 31.52% of all stroke cases, and the most common origin is hypertension. However, little is known about the method to identify high-risk populations of hypertensive intracerebral haemorrhage. RESULTS: The results showed that the angle between the middle cerebral artery and the internal carotid artery (AMIC), the distance between the beginning of the median artery and superior trunk (DMS), and the density (CT value) of the lenticulostriate artery (CTL) were statistically significant enough to cause intracerebral haemorrhage. In addition, we chose these three potential features for the ensemble learning classification model. Our developed ensemble-learning method outperforms not only previous work but also three other classic classification methods based on accuracy measurements. CONCLUSIONS: The developed mathematical model in the present study is efficient in predicting the probability of intracerebral haemorrhage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。