Microfluidic continuous flow digital loop-mediated isothermal amplification (LAMP).

阅读:8
作者:Rane Tushar D, Chen Liben, Zec Helena C, Wang Tza-Huei
Digital nucleic acid detection is rapidly becoming a popular technique for ultra-sensitive and quantitative detection of nucleic acid molecules in a wide range of biomedical studies. Digital polymerase chain reaction (PCR) remains the most popular way of conducting digital nucleic acid detection. However, due to the need for thermocycling, digital PCR is difficult to implement in a streamlined manner on a single microfluidic device, leading to complex fragmented workflows and multiple separate devices and instruments. Loop-mediated isothermal amplification (LAMP) is an excellent isothermal alternative to PCR with potentially better specificity than PCR because of the use of multiple primer sets for a nucleic acid target. Here we report a microfluidic droplet device implementing all the steps required for digital nucleic acid detection including droplet generation, incubation and in-line detection for digital LAMP. As compared to microchamber or droplet array-based digital assays, the continuous flow operation of this device eliminates the constraints on the number of total reactions imposed by the footprint of the device and the analysis throughput caused by the time for lengthy incubation and transfer of materials between instruments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。