With the development of the Internet of things (IoT), federated learning (FL) has received increasing attention as a distributed machine learning (ML) framework that does not require data exchange. However, current FL frameworks follow an idealized setup in which the task size is fixed and the storage space is unlimited, which is impossible in the real world. In fact, new classes of these participating clients always emerge over time, and some samples are overwritten or discarded due to storage limitations. We urgently need a new framework to adapt to the dynamic task sequences and strict storage constraints in the real world. Continuous learning or incremental learning is the ultimate goal of deep learning, and we introduce incremental learning into FL to describe a new federated learning framework. New generation federated learning (NGFL) is probably the most desirable framework for FL, in which, in addition to the basic task of training the server, each client needs to learn its private tasks, which arrive continuously independent of communication with the server. We give a rigorous mathematical representation of this framework, detail several major challenges faced under this framework, and address the main challenges of combining incremental learning with federated learning (aggregation of heterogeneous output layers and the task transformation mutual knowledge problem), and show the lower and upper baselines of the framework.
New Generation Federated Learning.
阅读:6
作者:Li Boyuan, Chen Shengbo, Peng Zihao
| 期刊: | Sensors | 影响因子: | 3.500 |
| 时间: | 2022 | 起止号: | 2022 Nov 3; 22(21):8475 |
| doi: | 10.3390/s22218475 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
