Mechanistic information on reactions proceeding via photoredox catalysis has enabled rational optimizations of existing reactions and revealed new synthetic pathways. One essential step in any photoredox reaction is catalyst quenching via photoinduced electron transfer or energy transfer with either a substrate, additive, or cocatalyst. Identification of the correct quencher using Stern-Volmer studies is a necessary step for mechanistic understanding; however, such studies are often cumbersome, low throughput and require specialized luminescence instruments. This report describes a high-throughput method to rapidly acquire a series of Stern-Volmer constants, employing readily available fluorescence plate readers and 96-well plates. By leveraging multichannel pipettors or liquid dispensing robots in combination with fast plate readers, the sampling frequency for quenching studies can be improved by several orders of magnitude. This new high-throughput method enabled the rapid collection of 220 quenching constants for a library of 20 common photocatalysts with 11 common quenchers. The extensive Stern-Volmer constant table generated greatly facilitates the systematic comparison between quenchers and can provide guidance to the synthetic community interested in designing and understanding catalytic photoredox reactions.
High-Throughput Determination of Stern-Volmer Quenching Constants for Common Photocatalysts and Quenchers.
阅读:6
作者:Motz Rachel N, Sun Alexandra C, Lehnherr Dan, Ruccolo Serge
| 期刊: | ACS Organic & Inorganic Au | 影响因子: | 4.400 |
| 时间: | 2023 | 起止号: | 2023 Jun 29; 3(5):266-273 |
| doi: | 10.1021/acsorginorgau.3c00019 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
