Assessing the impact of batch effect associated missing values on downstream analysis in high-throughput biomedical data.

阅读:5
作者:Hui Harvard Wai Hann, Chan Wei Xin, Goh Wilson Wen Bin
Batch effect associated missing values (BEAMs) are batch-wide missingness induced from the integration of data with different coverage of biomedical features. BEAMs can present substantial challenges in data analysis. This study investigates how BEAMs impact missing value imputation (MVI) and batch effect (BE) correction algorithms (BECAs). Through simulations and analyses of real-world datasets including the Clinical Proteomic Tumour Analysis Consortium (CPTAC), we evaluated six MVI methods: K-nearest neighbors (KNN), Mean, MinProb, Singular Value Decomposition (SVD), Multivariate Imputation by Chained Equations (MICE), and Random Forest (RF), with ComBat and limma as the BECAs. We demonstrated that BEAMs strongly affect MVI performance, resulting in inaccurate imputed values, inflated significant P-values, and compromised BE correction. KNN, SVD, and RF were particularly prone to propagating random signals, resulting in false statistical confidence. While imputation with Mean and MinProb were less detrimental, artifacts were nonetheless introduced. Furthermore, the detrimental effect of BEAMs increased in parallel with its severity in the data. Our findings highlight the necessity of comprehensive assessments and tailored strategies to handle BEAMs in multi-batch datasets to ensure reliable data analysis and interpretation. Future work should investigate more advanced simulations and a variety of dedicated MVI methods to robustly address BEAMs.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。