Supercapacitor/pseudocapacitor structures with electrodes and electrolytes based on conductive polymers, but not only, have been analyzed using advanced molecular dynamics simulation techniques. Results indicated in the literature were used to confirm the results obtained for the specific capacitance and energetic performances of the systems. New material classes like Polymer-MXene electrodes ((PANI)/Ti(3)C(2), PFDs/Ti(3)C(2)T(x)) present increased capacitance in comparison with simple polymeric composites (PETC or PTh). Combinations of polymers and metallic oxide, like PANI/V(2)O(5), present high capacitance, but new variants can provide improved performance. Different techniques, like electrode doping, adding different salts in the electrolyte (gel electrolyte), and using porous electrodes, can also improve performance. Steps for the non-invasive simulation method with HFSS (Ansys) are defined, and the materials are described at the molecular level as well as the interactions between atomic groups. Macroscopic properties of the system are determined (conductivity, specific energy) and represented on parametric graphs. A complex set of parameters is varied in order to optimize the structures through parameter correlation. Different stages of correlation are considered in order to establish the final sample design and improve energetic performance. An increase of about 8-28% can be obtained concerning the specific energy of the supercapacitor. Prediction, design, atypical behavior, and resonance are addressed using this technique.
Prediction of the Specific Energy of Supercapacitors with Polymeric Materials Using Advanced Molecular Dynamics Simulations.
阅读:3
作者:Ionescu Daniela, Kovaci Maria
| 期刊: | Polymers | 影响因子: | 4.900 |
| 时间: | 2024 | 起止号: | 2024 Dec 3; 16(23):3404 |
| doi: | 10.3390/polym16233404 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
