As one of the most consumed stable foods around the world, wheat plays a crucial role in ensuring global food security. The ability to quantify key yield components under complex field conditions can help breeders and researchers assess wheat's yield performance effectively. Nevertheless, it is still challenging to conduct large-scale phenotyping to analyse canopy-level wheat spikes and relevant performance traits, in the field and in an automated manner. Here, we present CropQuant-Air, an AI-powered software system that combines state-of-the-art deep learning (DL) models and image processing algorithms to enable the detection of wheat spikes and phenotypic analysis using wheat canopy images acquired by low-cost drones. The system includes the YOLACT-Plot model for plot segmentation, an optimised YOLOv7 model for quantifying the spike number per m(2) (SNpM(2)) trait, and performance-related trait analysis using spectral and texture features at the canopy level. Besides using our labelled dataset for model training, we also employed the Global Wheat Head Detection dataset to incorporate varietal features into the DL models, facilitating us to perform reliable yield-based analysis from hundreds of varieties selected from main wheat production regions in China. Finally, we employed the SNpM(2) and performance traits to develop a yield classification model using the Extreme Gradient Boosting (XGBoost) ensemble and obtained significant positive correlations between the computational analysis results and manual scoring, indicating the reliability of CropQuant-Air. To ensure that our work could reach wider researchers, we created a graphical user interface for CropQuant-Air, so that non-expert users could readily use our work. We believe that our work represents valuable advances in yield-based field phenotyping and phenotypic analysis, providing useful and reliable toolkits to enable breeders, researchers, growers, and farmers to assess crop-yield performance in a cost-effective approach.
CropQuant-Air: an AI-powered system to enable phenotypic analysis of yield- and performance-related traits using wheat canopy imagery collected by low-cost drones.
阅读:4
作者:Chen Jiawei, Zhou Jie, Li Qing, Li Hanghang, Xia Yunpeng, Jackson Robert, Sun Gang, Zhou Guodong, Deakin Greg, Jiang Dong, Zhou Ji
| 期刊: | Frontiers in Plant Science | 影响因子: | 4.800 |
| 时间: | 2023 | 起止号: | 2023 Jun 19; 14:1219983 |
| doi: | 10.3389/fpls.2023.1219983 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
