Deep learning-based action recognition for analyzing drug-induced bone remodeling mechanisms.

阅读:16
作者:Qinsheng Li, Ming Li, Yuening Li, Xiufeng Zhao
INTRODUCTION: Understanding the mechanisms of drug-induced bone remodeling is critical for optimizing therapeutic interventions and minimizing adverse effects in bone health management. Bone remodeling is a highly dynamic process that involves the intricate interplay between osteoblasts, osteoclasts, and osteocytes, regulated by a complex network of signaling pathways and molecular interactions. Traditional experimental and computational approaches often fail to capture this dynamic and multi-scale nature, particularly when influenced by pharmacological agents, which can have both therapeutic and adverse effects. METHODS: In this work, we present a novel deep learning-based framework for action recognition, specifically designed to analyze drug-induced bone remodeling mechanisms. Our framework leverages graph neural networks (GNNs) to model the spatial and temporal dependencies of multi-scale biological data, combined with a dynamic signal propagation model to identify key molecular interactions driving bone remodeling. A predictive pharmacological interaction model is integrated to quantify drug-target interactions, assess their systemic impacts, and simulate off-target effects. This approach also evaluates combinatorial drug effects, offering insights into the synergistic or antagonistic behaviors of multiple agents. RESULTS: By incorporating these features, our method provides a comprehensive view of drug-induced changes, enabling accurate prediction of their effects on bone formation and resorption pathways. DISCUSSION: Experimental results highlight the model's potential to advance precision medicine, enabling the development of more effective and safer therapeutic strategies for managing bone health.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。