Currently, finger vein recognition (FVR) stands as a pioneering biometric technology, with convolutional neural networks (CNNs) and Transformers, among other advanced deep neural networks (DNNs), consistently pushing the boundaries of recognition accuracy. Nevertheless, these DNNs are inherently characterized by static, continuous-valued neuron activations, necessitating intricate network architectures and extensive parameter training to enhance performance. To address these challenges, we introduce an adaptive firing threshold-based spiking neural network (ATSNN) for FVR. ATSNN leverages discrete spike encodings to transforms static finger vein images into spike trains with spatio-temporal dynamic features. Initially, Gabor and difference of Gaussian (DoG) filters are employed to convert image pixel intensities into spike latency encodings. Subsequently, these spike encodings are fed into the ATSNN, where spiking features are extracted using biologically plausible local learning rules. Our proposed ATSNN dynamically adjusts the firing thresholds of neurons based on average potential tensors, thereby enabling adaptive modulation of the neuronal input-output response and enhancing network robustness. Ultimately, the spiking features with the earliest emission times are retained and utilized for classifier training via a support vector machine (SVM). Extensive experiments conducted across three benchmark finger vein datasets reveal that our ATSNN model not only achieves remarkable recognition accuracy but also excels in terms of reduced parameter count and model complexity, surpassing several existing FVR methods. Furthermore, the sparse and event-driven nature of our ATSNN renders it more biologically plausible compared to traditional DNNs.
Finger Vein Recognition Based on Unsupervised Spiking Convolutional Neural Network with Adaptive Firing Threshold.
阅读:21
作者:Yang Li, Yao Qiong, Xu Xiang
| 期刊: | Sensors | 影响因子: | 3.500 |
| 时间: | 2025 | 起止号: | 2025 Apr 3; 25(7):2279 |
| doi: | 10.3390/s25072279 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
