Fusion of shallow and deep features from (18)F-FDG PET/CT for predicting EGFR-sensitizing mutations in non-small cell lung cancer.

阅读:3
作者:Yao Xiaohui, Zhu Yuan, Huang Zhenxing, Wang Yue, Cong Shan, Wan Liwen, Wu Ruodai, Chen Long, Hu Zhanli
BACKGROUND: Non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor-sensitizing (EGFR-sensitizing) mutations exhibit a positive response to tyrosine kinase inhibitors (TKIs). Given the limitations of current clinical predictive methods, it is critical to explore radiomics-based approaches. In this study, we leveraged deep-learning technology with multimodal radiomics data to more accurately predict EGFR-sensitizing mutations. METHODS: A total of 202 patients who underwent both flourine-18 fluorodeoxyglucose positron emission tomography/computed tomography ((18)F-FDG PET/CT) scans and EGFR sequencing prior to treatment were included in this study. Deep and shallow features were extracted by a residual neural network and the Python package PyRadiomics, respectively. We used least absolute shrinkage and selection operator (LASSO) regression to select predictive features and applied a support vector machine (SVM) to classify the EGFR-sensitive patients. Moreover, we compared predictive performance across different deep models and imaging modalities. RESULTS: In the classification of EGFR-sensitive mutations, the areas under the curve (AUCs) of ResNet-based deep-shallow features and only shallow features from different multidata were as follows: RES_TRAD, PET/CT vs. CT-only vs. PET-only: 0.94 vs. 0.89 vs. 0.92; and ONLY_TRAD, PET/CT vs. CT-only vs. PET-only: 0.68 vs. 0.50 vs. 0.38. Additionally, the receiver operating characteristic (ROC) curves of the model using both deep and shallow features were significantly different from those of the model built using only shallow features (P<0.05). CONCLUSIONS: Our findings suggest that deep features significantly enhance the detection of EGFR-sensitizing mutations, especially those extracted with ResNet. Moreover, PET/CT images are more effective than CT-only and PET-only images in producing EGFR-sensitizing mutation-related signatures.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。