Detection of Stroke with Retinal Microvascular Density and Self-Supervised Learning Using OCT-A and Fundus Imaging.

阅读:3
作者:Pachade Samiksha, Coronado Ivan, Abdelkhaleq Rania, Yan Juntao, Salazar-Marioni Sergio, Jagolino Amanda, Green Charles, Bahrainian Mozhdeh, Channa Roomasa, Sheth Sunil A, Giancardo Luca
Acute cerebral stroke is a leading cause of disability and death, which could be reduced with a prompt diagnosis during patient transportation to the hospital. A portable retina imaging system could enable this by measuring vascular information and blood perfusion in the retina and, due to the homology between retinal and cerebral vessels, infer if a cerebral stroke is underway. However, the feasibility of this strategy, the imaging features, and retina imaging modalities to do this are not clear. In this work, we show initial evidence of the feasibility of this approach by training machine learning models using feature engineering and self-supervised learning retina features extracted from OCT-A and fundus images to classify controls and acute stroke patients. Models based on macular microvasculature density features achieved an area under the receiver operating characteristic curve (AUC) of 0.87-0.88. Self-supervised deep learning models were able to generate features resulting in AUCs ranging from 0.66 to 0.81. While further work is needed for the final proof for a diagnostic system, these results indicate that microvasculature density features from OCT-A images have the potential to be used to diagnose acute cerebral stroke from the retina.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。